Estimation of TbCo composition from local-minimum-energy magnetic images taken by magneto-optical Kerr effect microscope by using machine learning

Author:

Kuno Shiori,Deguchi Shinji,Sumi SatoshiORCID,Awano HiroyukiORCID,Tanabe KenjiORCID

Abstract

Recently, the incorporation of machine learning (ML) has heralded significant advancements in materials science. For instance, in spintronics, it has been shown that magnetic parameters, such as the Dzyaloshinskii–Moriya interaction, can be estimated from magnetic domain images using ML. Magnetic materials exhibit hysteresis, leading to numerous magnetic states with locally minimized energy (LME) even within a single sample. However, it remains uncertain whether these parameters can be derived from LME states. In our research, we explored the estimation of material parameters from an LME magnetic state using a convolutional neural network. We introduced a technique to manipulate LME magnetic states, combining the ac demagnetizing method with the magneto-optical Kerr effect. By applying this method, we generated multiple LME magnetic states from a single sample and successfully estimated its material composition. Our findings suggest that ML emphasizes not the global domain structures that are readily perceived by humans but the more subtle local domain structures that are often overlooked. Adopting this approach could potentially facilitate the estimation of magnetic parameters from any state observed in experiments, streamlining experimental processes in spintronics.

Funder

Japan Society for the Promotion of Science

NAGAI Foundation for Science and Technology

Konica Minolta Imaging Science Foundation

Publisher

AIP Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3