A computational discharge model for sphere–plane long air gap under switching impulse voltage

Author:

Fang Yaqi1,Tu Hongxian1ORCID,Jia Lei2,Li Enwen2,Liu Lei2,Wang Guoli2,Zhang Xiaoxing1ORCID

Affiliation:

1. Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology 1 , Wuhan 430068, China

2. Electric Power Research Institute, China Southern Power Grid 2 , Guangzhou 510663, China

Abstract

There are lots of sphere–plane air gaps in valve halls in extra-high-voltage and ultra-high-voltage converter stations. Accurate prediction for discharge characteristics of sphere–plane gaps is of great significance for the selection of shielding structure and determining the dielectric strength of the valve hall. In this paper, based on the physical process of corona inception and continuous leader inception, a computational model for calculating the discharge voltage of a sphere–plane air gap under positive switching impulse voltage is proposed, and the leader characteristics and discharge voltage are analyzed. Then, the switching impulse discharge test of the sphere–plane gap with 0.15, 2, and 0.3 m radius spherical electrodes is carried out to verify the correctness of the model. The results show that the discharge voltage calculated by the proposed method is consistent with the test results, and the error is within 7.3%. The leader inception voltage and inception time increase with the increasing spherical electrode radius at the same gap distance, and an identical spherical electrode require higher leader inception voltage and faster leader inception time with the increasing gap distance.

Funder

National Engineering Laboratory for Ultra High Voltage Engineering Technology

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3