The ro-vibrational ν2 mode spectrum of methane investigated by ultrabroadband coherent Raman spectroscopy

Author:

Mazza Francesco1ORCID,Thornquist Ona1,Castellanos Leonardo1ORCID,Butterworth Thomas2ORCID,Richard Cyril3ORCID,Boudon Vincent3ORCID,Bohlin Alexis14ORCID

Affiliation:

1. Faculty of Aerospace Engineering, Delft University of Technology 1 , Kluyverweg 1, 2629 HS Delft, The Netherlands

2. Faculty of Science and Engineering, Maastricht University 2 , Paul Henri Spaaklaan 1, 6229 GS Maastricht, The Netherlands

3. Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS–Université Bourgogne Franche-Comté 3 , 9 Avenue Alain Savary, BP 47 870, F-21078 Dijon Cedex, France

4. Space Propulsion Laboratory, Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology 4 , Bengt Hultqvists väg 1, 981 92 Kiruna, Sweden

Abstract

We present the first experimental application of coherent Raman spectroscopy (CRS) on the ro-vibrational ν2 mode spectrum of methane (CH4). Ultrabroadband femtosecond/picosecond (fs/ps) CRS is performed in the molecular fingerprint region from 1100 to 2000 cm−1, employing fs laser-induced filamentation as the supercontinuum generation mechanism to provide the ultrabroadband excitation pulses. We introduce a time-domain model of the CH4ν2 CRS spectrum, including all five ro-vibrational branches allowed by the selection rules Δv = 1, ΔJ = 0, ±1, ±2; the model includes collisional linewidths, computed according to a modified exponential gap scaling law and validated experimentally. The use of ultrabroadband CRS for in situ monitoring of the CH4 chemistry is demonstrated in a laboratory CH4/air diffusion flame: CRS measurements in the fingerprint region, performed across the laminar flame front, allow the simultaneous detection of molecular oxygen (O2), carbon dioxide (CO2), and molecular hydrogen (H2), along with CH4. Fundamental physicochemical processes, such as H2 production via CH4 pyrolysis, are observed through the Raman spectra of these chemical species. In addition, we demonstrate ro-vibrational CH4v2 CRS thermometry, and we validate it against CO2 CRS measurements. The present technique offers an interesting diagnostics approach to in situ measurement of CH4-rich environments, e.g., in plasma reactors for CH4 pyrolysis and H2 production.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Reference97 articles.

1. The methane cycle on Titan

2. Background levels of methane in Mars’ atmosphere show strong seasonal variations

3. Methane formation driven by reactive oxygen species across all living organisms

4. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by V.Masson-Delmotte, P.Zhai, A.Pirani, S. L.Connors, C.Péan, S.Berger, N.Caud, Y.Chen, L.Goldfarb, M. I.Gomis, M.Huang, K.Leitzell, E.Lonnoy, J. B. R.Matthews, T. K.Maycock, T.Waterfield, O.Yelekçi, R.Yu, and B.Zhou (Cambridge University Press, Cambridge, United Kingdom and New York, 2021).

5. A Comparison of Emissions from Vehicles Fueled with Diesel or Compressed Natural Gas

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Empirical rovibrational energy levels for methane;Journal of Quantitative Spectroscopy and Radiative Transfer;2024-04

2. Air-laser-based coherent Raman spectroscopy of atmospheric molecules in a filamentary plasma grating;Optics Letters;2023-08-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3