Affiliation:
1. School of Engineering Science, University of Chinese Academy of Science, Beijing 101408, People's Republic of China
2. Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
Abstract
Focused jets have been widely studied owing to the abundance of attractive flow phenomena and industrial applications, whereas annular focused jets are less studied. This study combines experiments, numerical simulations, and analytical modeling to investigate the effect of the contact angle on the generation position and focusing efficiency of annular focused jets between parallel plates. In the experiment, a pulsed laser generates a cavitation bubble inside the droplet, and the rapidly expanding cavitation bubble drives an annular-focused jet on the droplet surface. Changing the plate wettability creates different contact angles and droplet surface shapes between the droplet and plates, which modulates the position and focusing efficiency of the annular jet. Based on the jet singularity theory and by neglecting gravity, the derived formula for the jet position offset is found to depend only on the contact angle, which is in good agreement with the experimental and numerical simulation results. Combined with numerical simulations to analyze the flow characteristics of the droplets between the parallel plates, a new calculation method for the jet focusing efficiency is proposed. Interestingly, when the liquid surface radius is small, the focusing efficiency can be improved by adjusting the contact angle to make the jet position closer to the flat plate, whereas the same operation reduces the focusing efficiency when the radius is large. The study of annular jets can expand the scope of traditional jet research and has the potential to provide new approaches for applications such as high-throughput inkjet printing and liquid transfer.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Youth Innovation Promotion Association
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献