Dynamics of flexible fibers in confined shear flows at finite Reynolds numbers

Author:

Abstract

We carry out a numerical study on the dynamics of a single non-Brownian flexible fiber in two-dimensional confined simple shear (Couette) flows at finite Reynolds numbers. We employ the bead-spring model of flexible fibers to extend the fluid particle dynamics (FPD) method that was originally developed for rigid particles in viscous fluids. We implement the extended FPD method using a multiple-relaxation-time scheme of the lattice Boltzmann method. The numerical scheme is validated first by a series of benchmark simulations that involve fluid–solid coupling. The method is then used to study the dynamics of flexible fibers in Couette flows. We only consider the highly symmetric cases where the fibers are placed on the symmetry center of Couette flows, and we focus on the effects of the fiber stiffness, the confinement strength, and the finite Reynolds number (from 1 to 10). A diagram of the fiber shape is obtained. For fibers under weak confinement and a small Reynolds number, three distinct tumbling orbits have been identified: (1) Jeffery orbits of rigid fibers—the fibers behave like rigid rods and tumble periodically without any visible deformation; (2) S-turn orbits of slightly flexible fibers—the fiber is bent to an S-shape and is straightened again when it orients to an angle of around 45° relative to the positive x-direction; and (3) S-coiled orbits of fairly flexible fibers—the fiber is folded to an S-shape and tumbles periodically and steadily without being straightened anymore during its rotation. Moreover, the fiber tumbling is found to be hindered by increasing either the Reynolds number or the confinement strength, or both.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Guangdong Provincial Applied Science and Technology Research and Development Program

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3