Modeling and experiment of femtosecond laser processing of micro-holes arrays in quartz

Author:

Shangguan Duansen1,Liu Yuhui1,Chen Liping1,Su Chang1,Liu Jing2ORCID

Affiliation:

1. School of Mechanical Science and Engineering, Huazhong University of Science and Technology 1 , Wuhan 430074, China

2. College of Computer Science, South-Central Minzu University 2 , Wuhan 430074, China

Abstract

Quartz material irradiated by femtosecond laser has increasingly attracted widespread attention for the micro-fabrication of photonic devices. Mechanism exploration is beneficial for accelerating the digital progress of laser processing. However, the mechanism between femtosecond laser and quartz is complicated and needs further theoretical investigation. This paper established the theoretical model based on the ionization model with the Drude equation to study the space–time evolution of free electron density and its influence on the absorption coefficient, reflectivity, and ablation depth. In addition, we achieved a 10 × 10 micro-holes array with a pore size less than 10 μm, cone angle less than 2° in a 0.25 mm thick quartz on the condition of a laser pulse energy Ep = 3 μJ, scanning velocity v = 0.1 mm/s, and defocusing distance Δf = −0.3 mm via the bottom-up femtosecond laser processing. The work gives a new insight into further understanding the ablation mechanism of transparent materials etching by the femtosecond laser. It provides a practical technical scheme for preparing commercial quartz photonic devices.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3