Optimal semiclassical regularity of projection operators and strong Weyl law

Author:

Lafleche Laurent1ORCID

Affiliation:

1. Institut Camille Jordan, UMR 5208 CNRS and Université Claude Bernard Lyon 1 , Villeurbanne, France

Abstract

Projection operators arise naturally as one-particle density operators associated to Slater determinants in fields such as quantum mechanics and the study of determinantal processes. In the context of the semiclassical approximation of quantum mechanics, projection operators can be seen as the analogue of characteristic functions of subsets of the phase space, which are discontinuous functions. We prove that projection operators indeed converge to characteristic functions of the phase space and that in terms of quantum Sobolev spaces, they exhibit the same maximal regularity as characteristic functions. This can be interpreted as a semiclassical asymptotic on the size of commutators in Schatten norms. Our study answers a question raised in Chong et al. [J. Eur. Math. Soc. (unpublished) (2024)] about the possibility of having projection operators as initial data. It also gives a strong convergence result in Sobolev spaces for the Weyl law in phase space.

Funder

HORIZON EUROPE European Research Council

Publisher

AIP Publishing

Reference31 articles.

1. Bounds on exponential decay of eigenfunctions of Schrödinger operators,1985

2. On an inequality of Lieb and Thirring;Lett. Math. Phys.,1990

3. Effective dynamics of interacting fermions from semiclassical theory to the random phase approximation;J. Math. Phys.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3