Synergetic enhancement effect of two-dimensional MoS2 nanosheets and metal organic framework-derived porous ZnO nanorods for photodegradation performance

Author:

Yin Huimin1,Zhou Suyu1ORCID,Liu Junhui1ORCID,Huang Mingju1ORCID

Affiliation:

1. Henan Joint International Research Laboratory of New Energy Materials and Devices, School of Physics and Electronics, Henan University , Kaifeng 475004, China

Abstract

Two-dimensional transition metal dichalcogenides and semiconductor metal oxides have shown great potential in photocatalysis. However, their stability and efficiency need to be further improved. In this paper, porous ZnO nanorods with high specific surface area were prepared from metal-organic framework ZIF-8 by a simple hydrothermal method. A MoS2/ZnO composite was constructed by loading MoS2 onto the surface of porous ZnO nanorods. Compared with ZnO materials prepared by other methods, MoS2/ZnO prepared in this paper exhibits superior photocatalytic performance. The enhanced photocatalytic activity of the MoS2/ZnO composite can be attributed to the formation of heterojunctions and strong interaction between them, which greatly facilitate the separation of electrons and holes at the contact interface. In addition, due to the wide absorption region of the visible spectrum, MoS2 can greatly broaden the light absorption range of the material after the formation of the composite material, increase the utilization rate of visible light, and reduce the combination of electrons and holes. This study provides a new way to prepare cheap and efficient photocatalysts.

Funder

Junhui Liu

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3