Asymmetry induces critical desynchronization of power grids

Author:

Jaros Patrycja1ORCID,Levchenko Roman23ORCID,Kapitaniak Tomasz1ORCID,Kurths Jürgen14ORCID,Maistrenko Yuri1245ORCID

Affiliation:

1. Division of Dynamics, Lodz University of Technology 1 , Stefanowskiego 1/15, 90-924 Lodz, Poland

2. Forschungszentrum Jülich 2 , 52428 Jülich, Germany

3. Faculty of Radiophysics, Electronics and Computer Systems, National University of Kyiv 3 , Volodymyrska St. 60, 01030 Kyiv, Ukraine

4. Potsdam Institute for Climate Impact Research 4 , 14437 Potsdam, Germany

5. Institute of Mathematics and Technical Centre, National Academy of Sciences of Ukraine 5 , Tereshchenkivska St. 3, 01030 Kyiv, Ukraine

Abstract

Dynamical stability of the synchronous regime remains a challenging problem for secure functioning of power grids. Based on the symmetric circular model [Hellmann et al., Nat. Commun. 11, 592 (2020)], we demonstrate that the grid stability can be destroyed by elementary violations (motifs) of the network architecture, such as cutting a connection between any two nodes or removing a generator or a consumer. We describe the mechanism for the cascading failure in each of the damaging case and show that the desynchronization starts with the frequency deviation of the neighboring grid elements followed by the cascading splitting of the others, distant elements, and ending eventually in the bi-modal or a partially desynchronized state. Our findings reveal that symmetric topology underlines stability of the power grids, while local damaging can cause a fatal blackout.

Funder

National Science Centre, Poland

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fault resilience in network of energy harvesters;Journal of Physics: Complexity;2024-01-25

2. Predicting Braess's paradox of power grids using graph neural networks;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-01-01

3. Stability Bounds of Droop-Controlled Inverters in Power Grid Networks;IEEE Access;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3