Rheology of Pseudomonas fluorescens biofilms: From experiments to predictive DPD mesoscopic modeling

Author:

Martín-Roca José12ORCID,Bianco Valentino2ORCID,Alarcón Francisco3ORCID,Monnappa Ajay K.4ORCID,Natale Paolo25ORCID,Monroy Francisco67ORCID,Orgaz Belen8ORCID,López-Montero Ivan25ORCID,Valeriani Chantal19ORCID

Affiliation:

1. Departamento de Estructrura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid 1 , 28040 Madrid, Spain

2. Departamento de Quimica Fisica, Universidad Complutense de Madrid 2 , 28040 Madrid, Spain

3. Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Universidad de Guanajuato 3 , Loma del Bosque 103, 37150 León, Mexico

4. Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12) 4 , 28041 Madrid, Spain

5. Instituto de Investigación Sanitaria Hospital Doce de Octubre (imas12) 5 , 28041 Madrid, Spain

6. Translational Biophysics. Instituto de Investigación Sanitaria Hospital Doce de Octubre (imas12) 6 , 28041 Madrid, Spain

7. Biophysics for Biotechnology and Biomedicine (Biophys-HUB). Departamento de Química Física, Universidad Complutense de Madrid 7 , 28040 Madrid, Spain

8. Sección Departamental de Farmacia Galénica y Tecnología Alimentaria, Universidad Complutense de Madrid 8 , Madrid, Spain

9. Grupo Interdisciplinar Sistemas Complejos (GISC) 9 , Madrid, Spain

Abstract

Bacterial biofilms mechanically behave as viscoelastic media consisting of micron-sized bacteria cross-linked to a self-produced network of extracellular polymeric substances (EPSs) embedded in water. Structural principles for numerical modeling aim at describing mesoscopic viscoelasticity without losing details on the underlying interactions existing in wide regimes of deformation under hydrodynamic stress. Here, we approach the computational challenge to model bacterial biofilms for predictive mechanics in silico under variable stress conditions. Up-to-date models are not entirely satisfactory due to the plethora of parameters required to make them functioning under the effects of stress. As guided by the structural depiction gained in a previous work with Pseudomonas fluorescens [Jara et al., Front. Microbiol. 11, 588884 (2021)], we propose a mechanical modeling by means of Dissipative Particle Dynamics (DPD), which captures the essentials of topological and compositional interactions between bacterial particles and cross-linked EPS-embedding under imposed shear. The P. fluorescens biofilms have been modeled under mechanical stress mimicking shear stresses as undergone in vitro. The predictive capacity for mechanical features in DPD-simulated biofilms has been investigated by varying the externally imposed field of shear strain at variable amplitude and frequency. The parametric map of essential biofilm ingredients has been explored by making the rheological responses to emerge among conservative mesoscopic interactions and frictional dissipation in the underlying microscale. The proposed coarse grained DPD simulation qualitatively catches the rheology of the P. fluorescens biofilm over several decades of dynamic scaling.

Funder

Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España

Santander/Universidad Complutense

Sara Borrell

Juan de la Cierva Fellowship

Marie Curie Individual Fellowship

MINECO

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3