Affiliation:
1. Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University 1 , Chengdu 610064, China
2. Insititue of New Energy and Low-Carbon Technology, Sichuan University 2 , Chengdu 610065, China
Abstract
The polycrystalline SnS with a similar layered crystal structure and band structure to SnSe exhibits enormous commercial thermoelectric potential due to its lower cost and environmentally friendly characteristics. However, the wider bandgap of SnS leads to low carrier concentration and inferior electrical transport performance. The two-dimensional interlayer hinders carrier transport, leading to interesting and mysterious anisotropic thermoelectric properties. Herein, we reported the optimized electron–phonon transport in anisotropic polycrystalline SnS by Ag doping and Se alloying, realizing a high quality factor B by multiple strategies of optimizing carrier concentration, modifying band structure, and introducing various defects; further potential performance is predicted by the single parabolic band model. Specifically, Ag-doped SnS not only significantly increases the carrier concentration and weighted mobility μw in both directions but also induces multi-scale precipitates proven by the Debye–Callaway model to suppress phonon transport. Moreover, additional Se alloying optimizes the electronic band structure and increases the Seebeck coefficient, further improving μW and boosting the maximum power factor to ∼3.72 μW cm−1 K−2 at 873 K in the out-of-plane direction. Consequently, the synergistic optimization of carrier and phonon transport achieved a high B of 0.7 and a maximum zTmax of ∼0.8 at 873 K in Ag0.02Sn0.98S0.99Se0.01. Additionally, the high B predicted a high zTmax∼1.5 based on optimized carrier transport characteristics, demonstrating the potential great-performance polycrystalline SnS. This work provides a promising avenue for optimizing the zT of polycrystalline SnS by transport engineering.
Funder
National Key Research and Development Program of China
Sichuan University Innovation Research Program of China
Subject
Physics and Astronomy (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献