The receding contact line cools down during dynamic wetting

Author:

Kusudo Hiroki1ORCID,Omori Takeshi2ORCID,Joly Laurent3ORCID,Yamaguchi Yasutaka45ORCID

Affiliation:

1. Institute of Fluid Science, Tohoku University 1 , 2-1-1 Katahira Aoba-ku, Sendai 980-8577, Japan

2. Department of Mechanical Engineering, Osaka Metropolitan University 2 , 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan

3. Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Institut Lumière Matière 3 , F-69622 Villeurbanne, France

4. Department of Mechanical Engineering, Osaka University 4 , 2-1 Yamadaoka, Suita 565-0871, Japan

5. Water Frontier Research Center (WaTUS), Research Institute for Science & Technology, Tokyo University of Science 5 , 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Abstract

When a contact line (CL)—where a liquid–vapor interface meets a substrate—is put into motion, it is well known that the contact angle differs between advancing and receding CLs. Using non-equilibrium molecular dynamics simulations, we reveal another intriguing distinction between advancing and receding CLs: while temperature increases at an advancing CL—as expected from viscous dissipation, we show that temperature can drop at a receding CL. Detailed quantitative analysis based on the macroscopic energy balance around the dynamic CL showed that the internal energy change of the fluid due to the change of the potential field along the pathline out of the solid–liquid interface induced a remarkable temperature drop around the receding CL, in a manner similar to latent heat upon phase changes. This result provides new insights for modeling the dynamic CL, and the framework for heat transport analysis introduced here can be applied to a wide range of nanofluidic systems.

Funder

Japan Society for the Promotion of Science

Core Research for Evolutional Science and Technology

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Reference51 articles.

1. Molecular theory of surface tension in liquids, encyclopedia of physics,1960

2. Contact angles: History of over 200 years of open questions;Surf. Innovations,2020

3. An essay on the cohesion of fluids;Philos. Trans. R. Soc. London,1805

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3