Robust cellulose-BaTiO3 separator with electric-field regulation effect for dendrite-free Zn-ion batteries

Author:

Zhang He1ORCID,Qiu Meijia1,Liang Yuxuan1ORCID,Chen Jinguo1ORCID,Liu Yongtao1,Pu Xiong2ORCID,Mai Wenjie1,Sun Peng1ORCID

Affiliation:

1. Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Department of Physics, College of Physics & Optoelectronic Engineering, Jinan University 1 , Guangdong 510632, People's Republic of China

2. Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences 2 , Yard 8, Yangyandong 1st Road, Huairou District, Beijing 101400, People's Republic of China

Abstract

Aqueous Zn-ion batteries have emerged as one of the best candidates for efficient and safe energy storage systems; however, they are severely restricted by the formation of uncontrolled Zn dendrites. To address this issue, micro-fibrillated cellulose (MFC)-BaTiO3 separators are designed to regulate the Zn2+ transport behavior and achieve stable Zn anodes via coupling multiple effects. The MFC component offers a cellulose framework with robust mechanical properties and prior ion transfer channels, while the BaTiO3 particles provide dynamic electric-field regulation toward Zn2+ transfer process under different states. Due to the above-mentioned co-functions, MFC-BaTiO3 separators deliver a much better comprehensive performance than the commercial glass fiber (GF) separator. A higher Zn2+ transference number of 0.69 can be achieved in the composite separator, which is more than twice that of the GF separator. Therefore, the MFC-BaTiO3 separators are capable of achieving a much longer cycle life of more than 1050 h under 1 mA cm−2 and 1 mAh cm−2 in contrast to only 250 h observed with GF separators. Corresponding Zn//Cu cells presented a considerable Coulombic efficiency of 99.1%, and Zn//MnO2 full cells can stably work for over 500 cycles. This work provides deep insights into designing efficient, high-performance, and low-cost separators for aqueous batteries.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3