Learning dynamics on invariant measures using PDE-constrained optimization

Author:

Botvinick-Greenhouse Jonah1ORCID,Martin Robert2ORCID,Yang Yunan3ORCID

Affiliation:

1. Center for Applied Mathematics, Cornell University 1 , Ithaca, New York 14850, USA

2. DEVCOM Army Research Laboratory, Research Triangle Park 2 , Durham, North Carolina 27709, USA

3. Institute for Theoretical Studies, ETH Zürich 3 , Zürich 8092, Switzerland

Abstract

We extend the methodology in Yang et al. [SIAM J. Appl. Dyn. Syst. 22, 269–310 (2023)] to learn autonomous continuous-time dynamical systems from invariant measures. The highlight of our approach is to reformulate the inverse problem of learning ODEs or SDEs from data as a PDE-constrained optimization problem. This shift in perspective allows us to learn from slowly sampled inference trajectories and perform uncertainty quantification for the forecasted dynamics. Our approach also yields a forward model with better stability than direct trajectory simulation in certain situations. We present numerical results for the Van der Pol oscillator and the Lorenz-63 system, together with real-world applications to Hall-effect thruster dynamics and temperature prediction, to demonstrate the effectiveness of the proposed approach.

Funder

National Defense Science and Engineering Graduate Fellowship

Air Force Office of Scientific Research

National Science Foundation

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Reference73 articles.

1. Data-driven modeling and learning in science and engineering;C. R. Mécanique,2019

2. Fitting ordinary differential equations to chaotic data;Phys. Rev. A,1992

3. Incremental single shooting—A robust method for the estimation of parameters in dynamical systems;Comput. Chem. Eng.,2009

4. Neural ordinary differential equations;Adv. Neural Inf. Process. Syst.,2018

5. Neural jump stochastic differential equations;Adv. Neural Inf. Process. Syst.,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3