Fast-release kinetics of a pH-responsive polymer detected by dynamic contact angles

Author:

Li Xiaomei1ORCID,Auepattana-Aumrung Krisada2ORCID,Butt Hans-Jürgen1ORCID,Crespy Daniel2ORCID,Berger Rüdiger1ORCID

Affiliation:

1. Max Planck Institute for Polymer Research 1 , Mainz, Germany

2. Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC) 2 , Rayong 21210, Thailand

Abstract

Polymers conjugated with active agents have applications in biomedicine, anticorrosion, and smart agriculture. When the active agent is used as a drug, corrosion inhibitor, or pesticide, it can be released upon a specific stimulus. The efficiency and the sustainability of active agents are determined by the released kinetics. In this work, we study the fast-release kinetics of 8-hydroxyquinoline (8HQ) from a pH-responsive, random copolymer of methyl methacrylate and 8-quinolinyl-sulfide-ethyl acrylate [P(MMA-co-HQSEA)] by hydrolysis of the β-thiopropionate groups. We used contact angle measurements of sliding drops as an elegant way to characterize the release kinetics. Based on the results gained from 1H nuclear magnetic resonance measurement, fluorescent intensity measurement, and velocity-dependent contact angle measurement, we found that both the hydrolysis rate and polymer conformation affect the release kinetics of 8HQ from a P(MMA-co-HQSEA) film. Polymer chains collapse and further suppress the release from the inner layer in acidic conditions, while polymer chains in a stretched condition further facilitate the release from the inner layer. As a result, the cumulative release rate of 8HQ is higher in the basic condition than in the acidic condition.

Funder

Deutsche Forschungsgemeinschaft

European Research Council

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chemical physics of controlled wettability and super surfaces;The Journal of Chemical Physics;2023-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3