1. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V. and Vanderplas, J., 2011. Scikit-learn: Machine learning in Python. In Journal of Machine Learning Research, 12, pp.2825–2830.
2. Dam, H.K., Pham, T., Ng, S.W., Tran, T., Grundy, J., Ghose, A., Kim, T. and Kim, C.J., 2018. A deep tree-based model for software defect prediction. arXiv preprint arXiv:1802.00921.
3. Li, J., He, P., Zhu, J. and Lyu, M.R., 2017, July. Software defect prediction via convolutional neural network. In 2017 IEEE International Conference on Software Quality, Reliability and Security (QRS) (pp. 318–328). IEEE.
4. Sayyad Shirabad, J., and Menzies, T.. (2005). The PROMISE Repository of Software Engineering Databases.
5. Chollet, F., and others. (2015). Keras. https://keras.io.