Relationship between structure and charge/orbital order in epitaxial single layer Ruddlesden–Popper manganite thin films

Author:

Flathmann Christoph1ORCID,Meyer Tobias2ORCID,Ross Ulrich1ORCID,Dehning Annika2ORCID,Jooss Christian23ORCID,Seibt Michael1ORCID

Affiliation:

1. 4th Institute of Physics, Georg-August-University Goettingen 1 , 37077 Göttingen, Germany

2. Institute of Materials Physics, Georg-August-University Goettingen 2 , 37077 Göttingen, Germany

3. International Center for Advanced Studies of Energy Conversion (ICASEC), Georg-August-University Goettingen 3 , 37077 Göttingen, Germany

Abstract

Ruddlesden–Popper manganites are strongly correlated, quasi two-dimensional systems with highly tunable functional properties, which can, for example, be controlled by composition, strain, and defects. Praseodymium calcium manganite is a particularly interesting Ruddlesden–Popper system due to its remarkably high temperature at which ordering phenomena set in, enabling correlation physics above room temperature. However, in order to utilize the correlation phenomena and the quasi-two-dimensionality of the Ruddlesden–Popper systems for applications, one needs to grow thin film junctions, making it necessary to control the structure–property relation of Ruddlesden–Popper thin films. Here, we present a cryogenic transmission electron microscopy study of praseodymium calcium manganite thin films, deposited on niobium doped strontium titanate substrates, where we analyze the structure of the manganite thin film, as well as the effect of the epitaxial strain and defects on the charge/orbital order of the system. We identify a structural phase transition above the onset of charge/orbital order, frequently occurring extended defects and the temperature dependence and spatial distribution of charge/orbital ordering in the film. Our results show in detail the relationships between strain/defects and properties of the ordered phases and thus give important insights into how to tailor the functional properties of thin film junctions of strongly correlated materials.

Funder

Deutsche Forschungsgemeinschaft

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3