A numerical study of the droplet impact dynamics on a two-dimensional random rough surface

Author:

Guo Fuzheng1ORCID,Zhang Shuzheng2ORCID,Hu Wenlong2,Zhou Yunong1ORCID,Du Chaofan1ORCID,Wang Fangxin1ORCID,Yang Bin2ORCID

Affiliation:

1. College of Architectural Science and Engineering, Yangzhou University, Yangzhou 225127, People's Republic of China

2. School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, People's Republic of China

Abstract

Considerable efforts had been devoted to investigating numerically the droplet impact dynamics on a superhydrophobic surface, whereas most of these numerical simulations were restricted to the two-dimensional (2D) axisymmetric coordinate system with the one-dimensional (1D) substrate surface. In this work, a three-dimensional (3D) computational fluid dynamics (CFD) model, which intergrew a 2D random rough surface, was proposed to investigate the droplet impact dynamics, and the multi-phase flow issue was solved by the Navier–Stokes equations. It is remarkable that the 3D CFD model revealed several significant dynamic details that were not easily captured in a 2D axisymmetric coordinate system or practical experiments. For instance, the 3D CFD model provided a unique perspective to understand the varying dynamic behaviors of impinged droplet in terms of the velocity streamline and dynamic viscosity analyses. Herein, the dynamic viscosity diagram revealed that the sprawl droplet on the 2D random rough surface was classified as the Cassie state, while as the Wenzel state for the smooth surface, which also explained the better bouncing behaviors of the droplet from the random rough surface. Accordingly, we suggested a visual way to evaluate the solid–liquid contact area surrounded by the triple-phase contact line. The effects of finger protrusion and central cavity growth from the sprawl droplet on the vortex generation were further analyzed on the ground of the velocity amplitude distribution and streamline data. The present work can provide early guidance to inquire into the impact dynamics of droplets on the random rough surface.

Funder

National Science Youth Foundation of Jiangsu Province, China

Graduate Practical Innovation Program of Jiangsu Province, China

Shanghai Rising-Star Program

High-tech Project Research in Shanghai

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3