Intercomparison of hydrostatic and nonhydrostatic modeling for tsunami inundation mapping

Author:

Bai YefeiORCID,Yamazaki YoshikiORCID,Cheung Kwok FaiORCID

Abstract

Nonhydrostatic modeling has emerged as an effective tool for seismological and tsunami research for over a decade, but its general application in hazard mapping and engineering design remains a topic of discussion. The approach incorporates the depth-averaged vertical velocity and nonhydrostatic pressure in the nonlinear shallow-water equations that provide a Poisson-type equation via the conservation of mass for quasi-three-dimensional flows. After the 2011 Tohoku tsunami, the State of Hawaii augmented the existing inundation maps to account for probable maximum tsunamis from Mw 9.3 and 9.6 Aleutian earthquakes. The use of both hydrostatic and nonhydrostatic modeling with a common set of telescopic computational grids covering 1330 km of shorelines facilitates a thorough intercomparison under distinct extreme events over a range of tropical island terrain and bathymetry. Including vertical flow dynamics can enhance the formation of a slowly attenuating trough behind the leading crest across the ocean as well as drawdown of receding water over steep nearshore slopes. The nonhydrostatic approach consistently gives lower predictions of the offshore tsunami amplitude due to frequency dispersion but can produce more severe coastal surges from resonance of the leading crest and trough over insular slopes as well as trapping of tsunami waves by wide shelves. Despite the potential for underestimating coastal surges, the lack of vertical inertia in hydrostatic models can result in substantially larger runup over steep terrain. The tsunami processes leading to inundation are complex with a strong dependence on the waveform and topography that can be well elucidated by the nonhydrostatic approach.

Funder

National Weather Service

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3