Affiliation:
1. Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), and Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology 1 , Beijing 100081, China
2. Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics 2 , P.O. Box 8009, Beijing 100088, China
Abstract
We report a first-principles study on the electronic and optical properties of delafossite CuMO2 (M = Al, Ga and In) using the recently developed hybrid functional pseudopotentials. We obtain trends of the fundamental and optical gaps with increasing M-atomic number, in agreement with experiment. In particular, we reproduce the experimental fundamental gap, optical gap, and Cu 3d energy of CuAlO2 almost perfectly, in contrast to the various calculations that have traditionally focused on valence electrons, which are unable to reproduce these key properties simultaneously. Since all that distinguishes our calculations is simply the use of a different Cu pseudopotential with a partially exact exchange interaction, this suggests that an inappropriate description of the electron–ion interaction may play a role in the density functional theory bandgap problem for CuAlO2. Applying Cu hybrid pseudopotentials to CuGaO2 and CuInO2 is also effective, yielding optical gaps that are very close to experiment. However, due to the limited experimental data for these two oxides, a comprehensive comparison as that for CuAlO2 is not possible. Furthermore, our calculations yield large exciton binding energies for delafossite CuMO2, all around 1 eV.
Funder
Ministry of Science and Technology of China
National Natural Science Foundation of China
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献