Anionic oxyl radical formed on CrVI-oxo anchored on the defect site of the UiO-66 node facilitates methane to methanol conversion

Author:

Qin Yuyao1ORCID,Li Liwen1,Liu Huixian1,Han Jinyu1,Wang Hua1ORCID,Zhu Xinli1ORCID,Ge Qingfeng2ORCID

Affiliation:

1. Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University 1 , Tianjin 300072, China

2. Department of Chemistry and Biochemistry, Southern Illinois University 2 , Carbondale, Illinois 62901, USA

Abstract

The direct conversion of methane to methanol has attracted increasing interest due to abundant and low-cost natural gas resources. Herein, by anchoring Cr-oxo/-oxyhydroxides on UiO-66 metal–organic frameworks, we demonstrate that reactive anionic oxyl radicals can be formed by controlling the coordination environment based on the results of density functional theory calculations. The anionic oxyl radicals produced at the completely oxidized CrVI site acted as the active species for facile methane activation. The thermodynamically stable CrVI-oxo/-oxyhydroxides with the anionic oxyl radicals catalyze the activation of the methane C–H bond through a homolytic mechanism. An analysis of the results showed that the catalytic performance of the active oxyl species correlates with the reaction energy of methane activation and H adsorption energies. Following methanol formation, N2O can regenerate the active sites on the most stable CrVI oxyhydroxides, i.e., the Cr(O)4Hf species. The present study demonstrated that the anionic oxyl radicals formed on the anchored CrVI oxyhydroxides by tuning the coordination environment enabled facile methane activation and facilitated methanol production.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3