Augmenting machine learning of Grad–Shafranov equilibrium reconstruction with Green's functions

Author:

McClenaghan J.1ORCID,Akçay C.1ORCID,Amara T. B.1ORCID,Sun X.2ORCID,Madireddy S.3ORCID,Lao L. L.1ORCID,Kruger S. E.4ORCID,Meneghini O. M.1ORCID

Affiliation:

1. General Atomics 1 , PO Box 85608, San Diego, California 92186-5608, USA

2. Oak Ridge Associated Universities 2 , Oak Ridge, Tennessee 37831-0117, USA

3. Argonne National Laboratory 3 , 9700 S Cass Ave., Lemont, Illinois 60439, USA

4. Tech-X Corporation 4 , 5621 Arapahoe Ave., Boulder, Colorado 80303, USA

Abstract

This work presents a method for predicting plasma equilibria in tokamak fusion experiments and reactors. The approach involves representing the plasma current as a linear combination of basis functions using principal component analysis of plasma toroidal current densities (Jt) from the EFIT-AI equilibrium database. Then utilizing EFIT's Green's function tables, basis functions are created for the poloidal flux (ψ) and diagnostics generated from the toroidal current (Jt). Similar to the idea of a physics-informed neural network (NN), this physically enforces consistency between ψ, Jt, and the synthetic diagnostics. First, the predictive capability of a least squares technique to minimize the error on the synthetic diagnostics is employed. The results show that the method achieves high accuracy in predicting ψ and moderate accuracy in predicting Jt with median R2 = 0.9993 and R2 = 0.978, respectively. A comprehensive NN using a network architecture search is also employed to predict the coefficients of the basis functions. The NN demonstrates significantly better performance compared to the least squares method with median R2 = 0.9997 and 0.9916 for Jt and ψ, respectively. The robustness of the method is evaluated by handling missing or incorrect data through the least squares filling of missing data, which shows that the NN prediction remains strong even with a reduced number of diagnostics. Additionally, the method is tested on plasmas outside of the training range showing reasonable results.

Funder

U.S. Department of Energy

Publisher

AIP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3