Direct numerical simulation of compressible turbulence accelerated by graphics processing unit: An open-source high accuracy accelerated computational fluid dynamic software

Author:

Dang Guanlin12ORCID,Liu Shiwei23ORCID,Guo Tongbiao1ORCID,Duan Junyi12ORCID,Li Xinliang12ORCID

Affiliation:

1. LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

Abstract

This paper introduces open-source computational fluid dynamics software named open computational fluid dynamic code for scientific computation with graphics processing unit (GPU) system (OpenCFD-SCU), developed by the authors for direct numerical simulation of compressible wall-bounded turbulence. This software is based on the finite difference method and is accelerated by the use of a GPU, which provides an acceleration by a factor of more than 200 compared with central processing unit (CPU) software based on the same algorithm and a number of Message Passing Interface processes, and the running speed of OpenCFD-SCU with just 512 GPUs exceeds that of CPU software with 130 000 CPUs. GPU-Stream technology is used to implement overlap of computing and communication, achieving 98.7% parallel weak scalability with 24 576 GPUs. The software includes a variety of high-precision finite difference schemes and supports a hybrid finite difference scheme, enabling it to provide both robustness and high precision when simulating complex supersonic and hypersonic flows. When used with the wide range of supercomputers currently available, the software should be able to improve the performance of large-scale simulations by up to two orders on the computational scale. Then, OpenCFD-SCU is applied to a validation and verification case of a Mach 2.9 compression ramp with mesh numbers up to 31.2 × 109.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

The GHfund A

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3