Droplet formation simulation using mixed finite elements

Author:

Nathawani Darsh K.1ORCID,Knepley Matthew G.2ORCID

Affiliation:

1. Computational and Data-Enabled Science and Engineering, University at Buffalo, Buffalo, New York 14260, USA

2. Department of Computer Science and Engineering, University at Buffalo, Buffalo, New York 14260, USA

Abstract

Droplet formation happens in finite time due to the surface tension force. The linear stability analysis is useful to estimate the size of a droplet but fails to approximate the shape of the droplet. This is due to a highly nonlinear flow description near the point where the first pinch-off happens. A one-dimensional axisymmetric mathematical model was first developed by Eggers and Dupont [“Drop formation in a one-dimensional approximation of the Navier–Stokes equation,” J. Fluid Mech. 262, 205–221 (1994)] using asymptotic analysis. This asymptotic approach to the Navier–Stokes equations leads to a universal scaling explaining the self-similar nature of the solution. Numerical models for the one-dimensional model were developed using the finite difference [Eggers and Dupont, “Drop formation in a one-dimensional approximation of the Navier–Stokes equation,” J. Fluid Mech. 262, 205–221 (1994)] and finite element method [Ambravaneswaran et al., “Drop formation from a capillary tube: Comparison of one-dimensional and two-dimensional analyses and occurrence of satellite drops,” Phys. Fluids 14, 2606–2621 (2002)]. The focus of this study is to provide a robust computational model for one-dimensional axisymmetric droplet formation using the Portable, Extensible Toolkit for Scientific Computation. The code is verified using the Method of Manufactured Solutions and validated using previous experimental studies done by Zhang and Basaran [“An experimental study of dynamics of drop formation,” Phys. Fluids 7, 1184–1203 (1995)]. The present model is used for simulating pendant drops of water, glycerol, and paraffin wax, with an aspiration of extending the application to simulate more complex pinch-off phenomena.

Funder

National Nuclear Security Administration

U.S. Department of Energy

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3