Thermocapillary-driven dynamics of a free surface in microgravity: Response to steady and oscillatory thermal excitation

Author:

Gligor D.1ORCID,Salgado Sánchez P.1ORCID,Porter J.1ORCID,Tinao I.1

Affiliation:

1. Center for Computational Simulation, Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Plaza de Cardenal Cisneros 3, 28040 Madrid, Spain

Abstract

A numerical analysis of the thermocapillary-driven dynamics of a free surface in microgravity is presented for an open container of liquid subjected to steady or oscillatory thermal excitation. The response to this forcing is analyzed for parameters representative of common silicone oils. In contrast to previous investigations, we permit large-scale unconstrained motion of the contact points and deformation of the free surface, which allows us to study the interaction between free surface dynamics and thermocapillary flow. First, the response of the free surface to steady thermal excitation is considered and characterized by the asymmetry of the contact points. Linear dependence of this asymmetry on the applied Marangoni number is found, which is amplified by the vibroequilibria effect when supplemental (high-frequency) vibrations are introduced. In low-viscosity liquids, the transient dynamics of the free surface includes sloshing modes, suggesting that thermal modulation may be used to excite them. The free surface response to oscillatory thermal excitation is then studied for a wide range of parameters, including variations in contact angle β, viscosity ν, container length L, and fluid height H. We perform a frequency analysis and obtain Bode-type diagrams for the contact point oscillations, characterizing the low-frequency response by its amplitude and phase with respect to the thermal forcing, and demonstrate a resonance peak corresponding to the principal sloshing mode. Overall, these results indicate the potential of oscillatory thermal excitation for fluid control in microgravity.

Funder

Ministerio de Ciencia, Innovación y Universidades

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3