Vibro-impact energy harvester for low frequency vibration enhanced by acoustic black hole

Author:

Zhang Liufeng1,Tang Xiao1,Qin Zhaoye1ORCID,Chu Fulei1

Affiliation:

1. Department of Mechanical Engineering, Tsinghua University, Beijing, China

Abstract

In this Letter, we propose an enhanced vibro-impact energy harvester using acoustic black holes (ABHs) for scavenging low-frequency vibration energy. The energy harvester involves two beams: a relatively rigid piezoelectric generating beam with ABH profile and a flexible driving beam with a tip mass mounted at the end. The tip mass and the generating beam collide repeatedly under low-frequency excitations. Experimental studies are conducted to investigate the output performance of the energy harvester by comparing the output power and voltage of generating beams with different tailored ends. Finite element analysis is also carried out to evaluate the influence of electrode number of the piezoelectric sheet attached to the ABH beam on the output performance of the energy harvester. It is shown that the impacts between the tip mass and generating beam are capable of transferring vibration energy from the low-frequency band to high-frequency band, where ABH gets a desirable energy focalization effect to improve the output performance of the energy harvester. The energy harvester achieves the best output performance when its electrode is divided into two parts with the excellent power of 0.7 mW at the low frequency range from 5 to 13 Hz.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3