Transient pressure-driven electrokinetic slip flow and heat transfer through a microannulus

Author:

Zhan Qinjian1ORCID,Deng Shuyan1ORCID

Affiliation:

1. Institute of Architecture and Civil Engineering, Guangdong University of Petrochemical Technology , Maoming 525000, People’s Republic of China

Abstract

To guarantee the transporting efficiency of microdevices associated with fluid transportation, mixing, or separation and to promote the heat transfer performance of heat exchangers in microelectronics, the hydrodynamic behaviors at the unsteady state as well as the thermal characteristics at the steady state in a pressure-driven electrokinetic slip flow through a microannulus are studied. To present a more reliable prediction, the slip phenomenon at walls is incorporated. The Cauchy momentum equation applicable to all time scales is analytically solved by the integral transform method; thereby, the physical picture of how the flow is initiated and accelerated to the steady state is provided. The energy equation and entropy generation for the steady flow are numerically solved. Consequently, the temperature profile, heat transfer rate, and entropy generation rate are computed at different electrokinetic widths, slip lengths, Joule heating parameters, and Brinkman numbers; thereby, the coupling effect of the slip hydrodynamics, annular geometry, viscous dissipation, and Joule heating on thermal behaviors is explored. The unsteady flow takes a longer time to achieve the steady state for a smaller radius ratio. The slip length not only accelerates the flow but also alters the velocity and temperature profiles. Compared to the outer one, the inner slip length plays a more significant role on the entropy generation rate. The relevant discussion can serve as a theoretical guide for the operation and thermal management of flow actuation systems related to annular geometries.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Reference46 articles.

1. Engineering flows in small devices;Annu. Rev. Fluid Mech.,2004

2. Lab-on-a-chip: A revolution in biological and medical sciences;Anal. Chem.,2000

3. A review of micropumps;J. Micromech. Microeng.,2004

4. Microfluidic mixing: A review;Int. J. Mol. Sci.,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3