A review: Comprehensive investigation on bandgap engineering under high pressure utilizing microscopic UV–Vis absorption spectroscopy

Author:

Chen Lin1ORCID,Gao Zhijian1,Li Qian1ORCID,Yan Chuanxin1ORCID,Zhang Haiwa1,Li Yinwei2ORCID,Liu Cailong1ORCID

Affiliation:

1. School of Physics Science and Information Technology, Liaocheng University 1 , Liaocheng, Shandong 252059, China

2. Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University 2 , Xuzhou 221116, China

Abstract

Bandgap engineering plays a vital role in material development and device optimization due to its significant impact on the photovoltaic and photoelectricity properties of materials. Nevertheless, it is still a great challenge to accurately control the bandgap of semiconductors to achieve the targeted properties of materials. Recently, pressure-induced bandgap regulation has emerged as a novel and effective tool to regulate bandgap, reveal the intrinsic band nature, and construct the in-depth structure–property relationships therein. In this review, the unique techniques of microscopic in situ steady-state UV–Vis absorption spectroscopy and high-pressure diamond anvil cell are introduced. This technique provides a powerful method to monitor the bandgap behaviors at high pressure. Then, the pressure-triggered bandgap responses are outlined based on several typical semiconductors, including metal halide perovskites, inorganic quantum dots, piezochromic molecular compounds, and two-dimensional semiconductor materials. The summarized structural effects on bandgap evolution and the general principles for bandgap engineering under high pressure are expected to provide guidance for further material design under ambient conditions. Microscopic absorption spectroscopy detection under high pressure is proven to be an ideal platform for developing functional materials and high-performance devices.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Liaocheng University Start-up Fund for Scientific Research of High-Level Talents

Special Construction Project Fund for Shandong Province Taishan Scholars

Guangyue Young Scholar Innovation Team of Liaocheng University

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3