Affiliation:
1. School of Aerospace Engineering, Guizhou Institute of Technology, Guizhou, Guiyang 550003, China
2. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
Abstract
Two-dimensional simulation models are established to investigate the impact-induced mechanical behavior of the PTFE/Al/W reactive materials. Random distribution of the metal particles and mesh generation of the specimen are obtained by using ANSYS parametric design language. Moreover, based on the experimental results of the Hopkinson bar, the loading curve in the simulation is simplified. Influences of the tungsten particle size, the particle distribution, and the loading strain rate on the mechanical behavior are analyzed by ANSYS/LS-DYNA. The results show that local severe deformation of the polytetrafluoroethylene (PTFE) matrix is generally caused by extrusion and slippage of the metal particles. The generation, growth, and interaction of the cracks are then induced gradually. Finally, many macrocracks form and the specimen dramatically fractures. Results also show that the local deformation of the PTFE matrix, deformation outline, and crack distribution are significantly influenced by the tungsten particle sizes and the particle distribution. In addition, with a decrease in the loading strain rate, the time for initial crack generation gradually delays and the deformation severity of the PTFE matrix shows a decrement.
Funder
National Natural Science Foundation of China
Start-up Funds for High-level Personnel Research of Guizhou Institute of Technology
Engineering Research Centers of Guizhou Ordinary Institution of Higher Education under Grant
Creative Research Groups Program of Guizhou Educational Commission under Grant
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献