Affiliation:
1. Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
Abstract
In a recent paper [A. D. Becke, J. Chem. Phys. 156, 214101 (2022)], we compared two Kohn–Sham density functionals based on physical modeling and theory with the best density-functional power series fits in the literature. With only a handful of physically motivated pre-factors, our functionals matched, and even slightly exceeded, the performance of the best power-series functionals on the general main group thermochemistry, kinetics, and noncovalent interactions (GMTKN55) chemical database of Goerigk et al. [Phys. Chem. Chem. Phys. 19, 32184 (2017)]. This begs the question: how much can their performance be improved by adding power-series terms of our own? We address this question in the present work. First, we describe a series expansion variable that we believe contains more local physics than any other variable considered to date. Then we undertake modest, one-dimensional fits to the GMTKN55 data with our theory-based functional corrected by power-series exchange and dynamical correlation terms. We settle on 12 power-series terms (plus six parent terms) and achieve the lowest GMTKN55 “WTMAD2” error yet reported, by a substantial margin, for a hybrid Kohn–Sham density functional. The new functional is called “B22plus.”
Funder
Natural Sciences and Engineering Research Council of Canada
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献