Sim2Real in reconstructive spectroscopy: Deep learning with augmented device-informed data simulation

Author:

Chen Jiyi1ORCID,Li Pengyu1ORCID,Wang Yutong1ORCID,Ku Pei-Cheng1ORCID,Qu Qing1ORCID

Affiliation:

1. Department of Electrical Engineering and Computer Science, University of Michigan , Ann Arbor, Michigan 48109, USA

Abstract

This work proposes a deep learning (DL)-based framework, namely Sim2Real, for spectral signal reconstruction in reconstructive spectroscopy, focusing on efficient data sampling and fast inference time. The work focuses on the challenge of reconstructing real-world spectral signals in an extreme setting where only device-informed simulated data are available for training. Such device-informed simulated data are much easier to collect than real-world data but exhibit large distribution shifts from their real-world counterparts. To leverage such simulated data effectively, a hierarchical data augmentation strategy is introduced to mitigate the adverse effects of this domain shift, and a corresponding neural network for the spectral signal reconstruction with our augmented data is designed. Experiments using a real dataset measured from our spectrometer device demonstrate that Sim2Real achieves significant speed-up during the inference while attaining on-par performance with the state-of-the-art optimization-based methods.

Funder

Division of Computing and Communication Foundations

Michigan Institute for Data Science, University of Michigan

Division of Electrical, Communications and Cyber Systems

KLA

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3