Modeling environment-dependent atomic-level properties in complex-concentrated alloys

Author:

Farnell Mackinzie S.1,McClure Zachary D.2ORCID,Tripathi Shivam2ORCID,Strachan Alejandro2ORCID

Affiliation:

1. School of Materials Science and Engineering, University of California Berkeley, Berkeley, California 94720, USA

2. School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA

Abstract

Complex-concentrated-alloys (CCAs) are of interest for a range of applications due to a host of desirable properties, including high-temperature strength and tolerance to radiation damage. Their multi-principal component nature results in a vast number of possible atomic environments with the associated variability in chemistry and structure. This atomic-level variability is central to the unique properties of these alloys but makes their modeling challenging. We combine atomistic simulations using many body potentials with machine learning to develop predictive models of various atomic properties of CrFeCoNiCu-based CCAs: relaxed vacancy formation energy, atomic-level cohesive energy, pressure, and volume. A fingerprint of the local atomic environments is obtained combining invariants associated with the local atomic geometry and periodic-table information of the atoms involved. Importantly, all descriptors are based on the unrelaxed atomic structure; thus, they are computationally inexpensive to compute. This enables the incorporation of these models into macroscopic simulations. The models show good accuracy and we explore their ability to extrapolate to compositions and elements not used during training.

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3