Leading-edge vortex and aerodynamic performance scaling in a simplified vertical-axis wind turbine

Author:

Ahnn SangwooORCID,Choi HaecheonORCID

Abstract

Numerical analysis is conducted to investigate the aerodynamic performance and characteristics of flow around a simplified vertical-axis wind turbine (VAWT) by varying the tip-speed ratio and number of blades. The tip-speed ratios considered are λ=RΩ/U0=0.8−2.4, and the numbers of blades are n=2−5 at the Reynolds number of Re=U0D/ν=80 000, where D(=2R) and Ω are the turbine diameter and rotation rate, respectively, U0 is the free-stream velocity, and ν is the kinematic viscosity. The primary flow feature observed around the VAWT is the formation and evolution of leading-edge vortices (LEVs) at lower tip-speed ratios of λ=0.8−1.2, which have a notable impact on the power coefficient in the upwind region. At high tip-speed ratios (λ>1.2), the LEV is not generated due to fast blade rotating speeds. Depending on the tip-speed ratio and solidity (σ=nc/πD, where c represents the blade chord length), these LEVs are generated at different azimuthal angles and exhibit varying strengths. A modified tip-speed ratio, λ′=λ/π(1−σ), proposed in the present study allows the flow structures with different λ's and n's to exhibit similarity when they are represented with λ′. Thus, the time-averaged power coefficient (i.e., aerodynamic performance; C¯PW) is a function of λ′ (rather than λ and n) in the range of σ=0.2−0.5 considered, and its maximum occurs at λ′=0.45−0.5 regardless of the number of blades, providing the optimal tip-speed ratio of λopt=γπ(1−σ), where γ=0.45−0.5. Finally, we show that C¯PW/(σλ3) is a function of λ′.

Funder

National Research Foundation of Korea

National Supercomputing Center, Korea Institute of Science and Technology Information

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3