Dynamic mode decomposition for Koopman spectral analysis of elementary cellular automata

Author:

Taga Keisuke1ORCID,Kato Yuzuru2ORCID,Yamazaki Yoshihiro1ORCID,Kawahara Yoshinobu34ORCID,Nakao Hiroya5ORCID

Affiliation:

1. Department of Physics, School of Advanced Science and Engineering, Waseda University 1 , Tokyo 169-8555, Japan

2. Department of Complex and Intelligent Systems, School of Systems Information Science, Future University Hakodate 2 , Hakodate, Hokkaido 041-8655, Japan

3. Graduate School of Information Science and Technology, Osaka University 3 , Osaka 565-0871, Japan and , Tokyo 103-0027, Japan

4. Center for Advanced Intelligence Project, RIKEN 3 , Osaka 565-0871, Japan and , Tokyo 103-0027, Japan

5. Department of Systems and Control Engineering, School of Engineering, Tokyo Institute of Technology 4 , Tokyo 152-8552, Japan

Abstract

We apply dynamic mode decomposition (DMD) to elementary cellular automata (ECA). Three types of DMD methods are considered, and the reproducibility of the system dynamics and Koopman eigenvalues from observed time series is investigated. While standard DMD fails to reproduce the system dynamics and Koopman eigenvalues associated with a given periodic orbit in some cases, Hankel DMD with delay-embedded time series improves reproducibility. However, Hankel DMD can still fail to reproduce all the Koopman eigenvalues in specific cases. We propose an extended DMD method for ECA that uses nonlinearly transformed time series with discretized Walsh functions and show that it can completely reproduce the dynamics and Koopman eigenvalues. Linear-algebraic backgrounds for the reproducibility of the system dynamics and Koopman eigenvalues are also discussed.

Funder

Japan Society for the Promotion of Science

Core Research for Evolutional Science and Technology

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3