Study on the productivity and mechanism of physical field evolution of enhanced geothermal systems under different working fluid types and properties

Author:

Cui Hanbo12ORCID,Jiang Xintong12ORCID,Mo Zongyun12ORCID,Guo Fei12,Guo Shenghao3ORCID,Zhuang Weitan12ORCID,Huang Xiaojun12

Affiliation:

1. School of Architecture and Civil Engineering, Anhui Polytechnic University 1 , Wuhu 241000, China

2. Anhui Engineering Research Center of Green Building and Digital Construction, Anhui Polytechnic University 2 , Wuhu 241000, China

3. School of Materials Science and Engineering, Shenyang Jianzhu University 3 , Shenyang 110000, China

Abstract

The injected working fluid conditions directly affect the heat generation efficiency of a stimulated hot dry rock reservoir. Taking exploration well GR1 in the Gonghe Basin of Qinghai as the research object, a stochastic discrete fracture reservoir model was established around the main injection channel, and the productivity variation pattern of the enhanced geothermal system (EGS) and the spatiotemporal evolution mechanism of the reservoir fields were analyzed for CO2 and H2O working fluids. The interaction mechanism between the upper and lower rock formations and the reservoir during the heat mining process was discussed. This study obtained the following findings: (1) when the working fluid was CO2, after 20 years of heat recovery, the injection flow rate, output flow rate, and heat generation efficiency with a working fluid temperature of 60 °C reached 1.22 times, 1.18 times, and 1.92 times those with a working fluid temperature of 35 °C, respectively. The average subsidence and average geostress with the working fluid temperature of 60 °C were low, at only 90.61% and 95.96% of those with the working fluid temperature of 35 °C, respectively. However, high-temperature fluid injection increased flow loss. The changes in the various laws of H2O-EGS were similar to those of CO2-EGS. (2) When the working fluid temperature was 35 °C, after 20 years of heat recovery, the output flow rate and heat generation efficiency with the CO2-EGS reached 12.66 times and 1.28 times those with the H2O-EGS, respectively. However, the flow loss, average subsidence, and average geostress were higher with the CO2-EGS, reaching 6.58 times, 1.14 times, and 1.06 times those with the H2O-EGS, respectively. The patterns in these parameters observed at the other temperatures were similar to those observed at 35 °C. (3) The temperature decrease of the cushion layer was higher than that of the caprock, while the subsidence of the caprock was higher, and this phenomenon was more obvious when the working fluid temperature was lower. The conclusions obtained have important reference significance for the rational selection of working fluids.

Funder

Natural Science Foundation of Anhui Province

Housing Urban and Rural Construction Science and Technology Project of Anhui Province

Wuhu Applied Basic Research Project

Key R&D and Achievement Transformation Projects in Wuhu

The Ph.D. Research Startup Foundation of Anhui Polytechnic University

The Key Research Foundation of Anhui Polytechnic University

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3