Numerical modeling of metal-dielectric metasurface as an element of microwave sensors for biomedical applications

Author:

Kuznetsova K. S.1ORCID,Pashynska V. A.12ORCID,Eremenko Z. E.13ORCID

Affiliation:

1. O. Ya. Usykov Institute for Radiophysics and Electronics of NAS of Ukraine 1 , Kharkiv 61085, Ukraine

2. B. Verkin Institute for Low Temperature Physics and Engineering of NAS of Ukraine 2 , Kharkiv 61103, Ukraine

3. Leibniz Institute for Solid State and Materials Research 3 , Dresden 01069, Germany

Abstract

This paper reports the results of numerical modeling of wave reflection coefficient behavior of the metal-dielectric metasurface at microwaves that can be used for biomedical applications. The study includes optimization of the working parameters of the metasurface-based structure as a sensitive element of a microwave sensoring systems for determination of proteins concentration in different solutions. In the current research a unit with the geometry, which is similar to the geometry of one well of the standard 96-multiwell laboratory microplate, is used as a resonant metasurface unit cell and liquid-holding structure. Human serum albumin (HSA) is used as a protein specimen in our model study. The present numerical modeling is based on the results of our previous experimental measurements of complex permittivity values of HSA water solutions and its biochemical reaction mixtures using microwave dielectrometry method and the developed setup. The unit cell approach calculations are performed by COMSOL Multiphysics software. The optimization of working parameters of the metal-dielectric metasurface structure with tested solutions allow us to observe the resonance effects of the wave reflection coefficient in the microwave range. We can determine the HSA concentration changes in water solutions and enzymatic reaction mixtures by the resonance frequency shift of the wave reflection coefficient of the metal-dielectric metasurface. Developed metal-dielectric metasurface-based structure demonstrates prospects to be used as a sensitive element of microwave sensors for proteins concentration determination with biomedical purposes.

Publisher

AIP Publishing

Subject

General Physics and Astronomy,Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3