Model study of the protein-ligand binding in the development of hypersensitivity to folic acid and its analogs

Author:

Khmil N. V.12,Kolesnikov V. G.1

Affiliation:

1. O. Ya. Usikov Institute for Radiophysics and Electronics National Academy of Sciences of Ukraine 1 , Kharkiv 61085, Ukraine

2. Kharkiv National University of Radio Electronics 2 , Kharkiv 61166, Ukraine

Abstract

Folic acid (FA) plays a vital role in various metabolic processes, including synthesis and repair of DNA, cell division, the production of red blood cells, and fetal development. However, hypersensitivity to FA and its analogs can occur, leading to various symptomatic manifestations, including shortness of breath, skin rashes, itching, hives, swelling, gastrointestinal disturbances, tachycardia, and anaphylaxis. The mechanism of hypersensitivity to FA and its analogs is not well understood. However, it is known that human serum albumin (HSA) serves as a major pharmacokinetic effector for many substances and drugs, including FA and its analogs such as 5-methyltetrahydrofolic acid (5-MTHF), tetrahydrofolic acid (THFA), and methotrexate (MTX). HSA can interact with these compounds, affecting their distribution and metabolism. The study aimed to study the energetic and topological characteristics of the non-covalent complexes formed between HSA and FA and its analogs in order to obtain more complete information about the potential mechanisms involved in hypersensitivity reactions. Molecular docking was applied to search for the most energetically favorable conformations of the protein-ligand complexes and score the geometries based on their lowest binding energy. The 3D structure of HSA (PDB ID: 1AO6) was used as the docking target, which was obtained from the protein database. The structures of the ligands (FA, 5-MTHF, THFA, and MTX) were downloaded from PubChem, an open chemistry database at the National Institutes of Health. The surface area, volume, and depth of the binding pocket were determined using Proteins Plus. The identification of non-covalent interactions between HSA and the ligands was carried out using the PoseView and DoGSiteScorer web tools. It has been demonstrated that hydrophobic interactions and hydrogen bonds predominantly stabilize all the studied HSA-ligand complexes. Molecular docking analysis revealed that HSA binds the ligands within subdomains IB, IIA, and IIIA, with a binding energy of less than –10.0 kcal/mol. Identifying specific binding sites within the new antigen structures (the complex of HSA with the ligands) can be valuable in determining the energetically favorable binding of epitopes from these antigens to the active sites of IgE antibodies or immune cell receptors.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3