A novel testing method for ultra-low-frequency vibration signal based on passive radio frequency tag sensing

Author:

Lou Litai1ORCID,Yang Jianhua1ORCID,Ma Kaixuan1ORCID,Gong Tao1ORCID,Wang Zhongqiu2ORCID,Li Baofeng1ORCID

Affiliation:

1. Jiangsu Key Laboratory of Mine Mechanical and Electrical Equipment, School of Mechatronic Engineering, China University of Mining and Technology 1 , Xuzhou 221116, Jiangsu, China

2. School of Computer Science and Technology, China University of Mining and Technology 2 , Xuzhou 221116, Jiangsu, China

Abstract

Ultra-low-frequency vibration is prevalent in many critical research fields. Nevertheless, for ultra-low-frequency vibration signals below 1 Hz, there is currently a lack of a cost-effective and efficient measurement method. A new ultra-low-frequency vibration signal testing method based on the passive radio frequency tag phase is proposed using the Radio Frequency Identification (RFID) sensing method. By employing vibration detection on ultra-low-frequency vibration signals, the effectiveness of the proposed approach across different frequencies is validated while thoroughly considering factors such as measurement range, precision, distance, and occlusion effects. The results indicate that this method can accurately measure ultra-low frequency vibration signals as low as 0.01 Hz, with an average relative error of only less than 1.5% for all measurement results, and the error decreases with increasing detection frequency. For the measurement of a 1 Hz vibration signal, the average relative error is less than 1%. In addition, the measurement accuracy remains unaffected by distance or occlusion. Sensitivity and stability tests are also conducted. Continuous monitoring for 8 hours demonstrates the excellent measurement stability of the proposed method. Finally, a performance comparison has been made with laser displacement sensors commonly used in non-contact ultra-low-frequency measurement methods. The results show that the RFID sensing method can detect lower vibration frequencies and has a larger amplitude measurement range and better environmental adaptability. Overall, for ultra-low-frequency vibration, this method offers advantages such as high precision, passive non-contact operation, non-line-of-sight path monitoring, affordability, and convenience. These attributes render it suitable for extensive application in various engineering scenarios requiring ultra-low-frequency vibration testing.

Funder

National Natural Science Foundation of China

Postgraduate Research & Practice Innovation of Jiangsu Province

Graduate Innovation Program of China University of Mining and Technology

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3