Modeling geysers triggered by an air pocket migrating with running water in a pipeline

Author:

Abstract

Storm sewer systems may experience storm geysers, raising concerns about public safety. A thorough understanding of the influential factors of the geysers is essential yet insufficiently investigated in the literature. A transient three-dimensional (3D) computational fluid dynamics model incorporating the volume of fluid method is used to investigate the geyser formation mechanism and hydrodynamics. An air pocket in a pressurized pipe travels with water past a vertical shaft, producing an air-releasing geyser and, subsequently, a rapid-filling geyser. If the air pocket in the pipe is too small or if it moves too quickly, a hybrid geyser might be set off when the air-releasing and rapid-filling geysers overlap. A hybrid geyser has unique properties since it combines an air-releasing geyser and a rapid-filling geyser. The presence of hybrid geysers lowers the height of air-releasing and rapid-filling geysers. Equations are proposed for predicting the heights of the geysers with errors of about 15%. The height of the air-releasing geyser increases with the water level in the shaft. As the pressure difference between the two ends of the pipe reduces, the height of the rapid-filling geyser increases. The vertical shaft diameter has little influence on rapid-filling geysers, while a small diameter often results in high air-releasing geysers. The effect on the height of both kinds of geysers is negligible when the air pocket volume is large enough. The findings can be used for designing storm geyser mitigation measures.

Funder

National Natural Science Foundation of China

China Scholarship Council

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3