Rayleigh–Plesset-based Eulerian mixture model for cavitating flows

Author:

Cianferra M.1ORCID,Armenio V.1ORCID

Affiliation:

1. Department of Engineering and Architecture, University of Trieste , Trieste, Italy

Abstract

The homogeneous mixture model (HMM) is widely in use for simulation of cavitating flows. The mass transfer is typically ruled by simplified models whose efficiency is strictly dependent on the empirical choice of vaporization/condensation constants. In the present paper, we formulate a physically based mass-transfer model relying on the solution of the complete Rayleigh–Plesset (RP) equation. The latter can model the elasticity of the bubbles and non-linear interaction with the external pressure field. The model is tested in different configurations, also considering comparisons with the Schnerr–Sauer model (SSm) and the linearized version of the RP equation. The preliminary simplified tests show that the SS model responds statically to pressure variations and thus in not able to reproduce the actual dynamics of cavitation, under certain circumstances. On the other hand, the linearized RP model (RPl), although dynamically responsive to pressure variations, produces unrealistic small-amplitude bubble fluctuations, whereas the complete RP model (RPc) gives more realistic results. Tests on the performance of the SSm and RP models were carried out considering the turbulent flow in a convergent–divergent Venturi channel, already tested in numerical and experimental reference research. Here, we use the incompressible HMM. The study highlights various crucial aspects of the RPc model, emphasizing its own ability in replicating the shedding cycle as a three-dimensional, and non-stationary phenomenon. On the other hand, the SSm model results as a valid approximation for initial growth stages but fails to capture complex dynamics during the collapse phase. The results are consistent with recent literature findings, and refinements in grid resolution enhance accuracy in capturing the non-stationary sheet-to-cloud vapor dynamics. Neglecting compressibility may account for disparities between numerical and experimental outcomes, especially concerning shock waves generation and propagation. The RPc model emerges as a good candidate in reproducing bubble cloud dynamics and, in the next future, can be implemented in compressible HMM.

Publisher

AIP Publishing

Reference35 articles.

1. Cavitation in medicine;Interface Focus,2015

2. Water disinfection by orifice induced hydrodynamic cavitation;Ultrason. Sonochem.,2020

3. Observations of the dynamics and acoustics of attached cavities,1990

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3