Efficient all-electron hybrid density functionals for atomistic simulations beyond 10 000 atoms

Author:

Kokott Sebastian1ORCID,Merz Florian2ORCID,Yao Yi3ORCID,Carbogno Christian1ORCID,Rossi Mariana4ORCID,Havu Ville5,Rampp Markus6ORCID,Scheffler Matthias1ORCID,Blum Volker37ORCID

Affiliation:

1. The NOMAD Laboratory at the Fritz Haber Institute of the Max-Planck-Gesellschaft and IRIS Adlershof of the Humboldt-Universität zu Berlin 1 , Berlin, Germany

2. Lenovo HPC Innovation Center 2 , Stuttgart, Germany

3. Thomas Lord Department of Mechanical Engineering and Material Science, Duke University 3 , Durham, North Carolina 27708, USA

4. MPI for the Structure and Dynamics of Matter 4 , Luruper Chaussee 149, 22761 Hamburg, Germany

5. Department of Applied Physics, School of Science, Aalto University 5 , Espoo, Finland

6. Max Planck Computing and Data Facility 6 , 85748 Garching, Germany

7. Department of Chemistry, Duke University 7 , Durham, North Carolina 27708, USA

Abstract

Hybrid density functional approximations (DFAs) offer compelling accuracy for ab initio electronic-structure simulations of molecules, nanosystems, and bulk materials, addressing some deficiencies of computationally cheaper, frequently used semilocal DFAs. However, the computational bottleneck of hybrid DFAs is the evaluation of the non-local exact exchange contribution, which is the limiting factor for the application of the method for large-scale simulations. In this work, we present a drastically optimized resolution-of-identity-based real-space implementation of the exact exchange evaluation for both non-periodic and periodic boundary conditions in the all-electron code FHI-aims, targeting high-performance central processing unit (CPU) compute clusters. The introduction of several new refined message passing interface (MPI) parallelization layers and shared memory arrays according to the MPI-3 standard were the key components of the optimization. We demonstrate significant improvements of memory and performance efficiency, scalability, and workload distribution, extending the reach of hybrid DFAs to simulation sizes beyond ten thousand atoms. In addition, we also compare the runtime performance of the PBE, HSE06, and PBE0 functionals. As a necessary byproduct of this work, other code parts in FHI-aims have been optimized as well, e.g., the computation of the Hartree potential and the evaluation of the force and stress components. We benchmark the performance and scaling of the hybrid DFA-based simulations for a broad range of chemical systems, including hybrid organic–inorganic perovskites, organic crystals, and ice crystals with up to 30 576 atoms (101 920 electrons described by 244 608 basis functions).

Funder

European Research Council

Horizon 2020 Framework Programme

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3