Rational engineering of semiconductor-based photoanodes for photoelectrochemical cathodic protection

Author:

Chen Xiangyan1ORCID,Wang Shaopeng1ORCID,Shen Shaohua2ORCID

Affiliation:

1. Northwest Institute for Non-ferrous Metal Research 1 , Xi'an, Shaanxi 710016, China

2. International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University 2 , Xi'an, Shaanxi 710049, China

Abstract

Photoelectrochemical (PEC) cathodic protection based on semiconductor photoanodes, by combining solar energy utilization and metal anticorrosion, provides a promising platform for developing an environmentally friendly metal protection technology. In this context, semiconductors (e.g., TiO2, ZnO, SrTiO3, BiVO4, and g-C3N4), with merits of suitable band structure, good chemical stability, and low cost, have attracted extensive attention among the investigated photoanode candidates. However, the poor optical absorption properties and the high photogenerated charge recombination rate severely limit their photocathodic protection performances. In order to break these limitations, different modification strategies for these photoanodes have been developed toward the significant enhancement in PEC cathodic protection properties. In this Review, the rational engineering of semiconductor-based photoanodes, including nanostructure design, elemental doping, defect engineering, and heterostructure construction, has been overviewed to introduce the recent advances for PEC cathodic protection. This Review aims to provide fundamental references and principles for the design and fabrication of highly efficient semiconductor photoanodes for PEC cathodic protection of metals.

Funder

the Youth Talent Support Project of Xi’an Association of Science and Technology

Natural Science Foundation of Shaanxi Province

Publisher

AIP Publishing

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3