Optimization and experimental evaluation of the Al1100 and SS202 cylindrical cups using conical die without blank holder

Author:

Kaimkuriya Amit1ORCID,Balaguru S.1

Affiliation:

1. School of Mechanical Engineering, VIT Bhopal University , Sehore, Madhya Pradesh 466114, India

Abstract

Deep drawing is the most widely used process for forming cup shaped products in automobile, aerospace, and packing industries. In this research, the deep drawing process is used to draw the cylindrical cups of Al1100 and SS202 metal sheets using a new type of conical die and a flat-bottomed punch without a blank holder. The experiment included in this work used blank diameters of 50, 55, 60, and 70 mm, tested under both dry and lubricated conditions. The findings indicated that the lubrication significantly reduced defects such as deflection, spring-back, earing, and uneven depth. A blank diameter of 60 mm is optimal for defect-free cups. In addition, the research observed that lower friction coefficients corresponded to required load. The deep drawing procedure has distinctive effectible process parameters from which an optimum level of parameters and defect-free cups with required mechanical properties can been obtained. Thus, using the mixed response surface methodology for optimization, the research showed an excellent decrease in the maximum required load, mainly under lubricated conditions. In brief, the optimization model for SS202 under dry conditions became incredibly accurate, with less than 1% error compared to experimental results. On the other hand, for Al1100 under dry conditions, the model’s predictions deviated more, showing more than a 12% error, indicating a need for additional refinement or extra factors to enhance the accuracy of Al1100.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3