Percolation transitions in interdependent networks with reinforced dependency links

Author:

Li Jie1ORCID,Wang Ying1,Zhong Jilong2ORCID,Sun Yun1,Guo Zhijun1,Fu Chaoqi3ORCID,Yang Chunlin1

Affiliation:

1. Air Traffic Control and Navigation College, Air Force Engineering University, Xi’an 710038, China

2. National Institute of Defense Technology Innovation, PLA Academy of Military Science, Beijing 100071, China

3. Equipment Management and UAV Engineering College, Air Force Engineering University, Xi’an 710038, China

Abstract

Dependence can highly increase the vulnerability of interdependent networks under cascading failure. Recent studies have shown that a constant density of reinforced nodes can prevent catastrophic network collapses. However, the effect of reinforcing dependency links in interdependent networks has rarely been addressed. Here, we develop a percolation model for studying interdependent networks by introducing a fraction of reinforced dependency links. We find that there is a minimum fraction of dependency links that need to be reinforced to prevent the network from abrupt transition, and it can serve as the boundary value to distinguish between the first- and second-order phase transitions of the network. We give both analytical and numerical solutions to the minimum fraction of reinforced dependency links for random and scale-free networks. Interestingly, it is found that the upper bound of this fraction is a constant 0.088 01 for two interdependent random networks regardless of the average degree. In particular, we find that the proposed method has higher reinforcement efficiency compared to the node-reinforced method, and its superiority in scale-free networks becomes more obvious as the coupling strength increases. Moreover, the heterogeneity of the network structure profoundly affects the reinforcement efficiency. These findings may provide several useful suggestions for designing more resilient interdependent networks.

Funder

National Natural Science Foundation of China

National Social Science Fund of China

Basic research program of Natural Science in Shaanxi Province

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robustness of edge-coupled interdependent networks with reinforced edges;Journal of Complex Networks;2023-11-07

2. Research on Key Fragile Dependency Links Removal Strategies in Interdependent Power and Communication Networks under Cascading Failures;2023 3rd International Conference on Neural Networks, Information and Communication Engineering (NNICE);2023-02-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3