An OpenFOAM framework to model thermal bubble-driven micro-pumps

Author:

Hayes B.1ORCID,Whiting G. L.1ORCID,MacCurdy R.1ORCID

Affiliation:

1. Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder , Boulder, Colorado 80309, USA

Abstract

Thermal bubble-driven micro-pumps (also known as inertial pumps) are an upcoming micro-pump technology that can be integrated directly into micro/mesofluidic channels to displace fluid without moving parts. These micro-pumps are high-power resistors that locally vaporize a thin layer of fluid above the resistor surface to form a high-pressure vapor bubble which performs mechanical work. Despite their geometric simplicity, thermal bubble-driven micro-pumps are complex to model due to the multiphysics couplings of Joule heating, thermal bubble nucleation, phase change, and multiphase flow. As such, most simulation approaches simplify the physics by neglecting Joule heating, nucleation, and phase change effects as done in this study. To date, there are no readily available, reduced physics open-source modeling tools that can resolve both pre-collapse (defined as when the bubble is expanding and collapsing) and post-collapse (defined as when the bubble has re-dissolved back into the subcooled fluid) bubble and flow dynamics. In this study, an OpenFOAM framework for modeling thermal bubble-driven micro-pumps is presented, validated, and applied. The developed OpenFOAM model agrees with both experimental data and commercial computational fluid dynamics (CFD) software, FLOW-3D. Additionally, we assess the shape of the transient velocity profile during a pump cycle for the first time and find that it varies substantially from theoretical Poiseuille flow during pre-collapse but is within 25% of the theoretical flow profile during post-collapse. We find that this deviation is due to flow never becoming fully developed during each pump cycle. We envision the developed OpenFOAM framework as an open-source CFD toolkit for microfluidic designers to simulate devices with thermal bubble-driven micro-pumps.

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3