The effect of chemical constitution on polyisoprene dynamics

Author:

Ghanta Rohit1ORCID,Burkhart Craig2ORCID,Polińska Patrycja3ORCID,Harmandaris Vagelis45ORCID,Doxastakis Manolis1ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering, University of Tennessee 1 , Tennessee, Knoxville 37996, USA

2. The Goodyear Tire & Rubber Company 2 , Akron, Ohio 44305, USA

3. Goodyear Innovation Center Luxembourg 3 , Avenue Gordon Smith, L-7750 Colmar-Berg, Luxembourg

4. Department of Applied Mathematics, University of Crete, and IACM FORTH 4 , GR-71110 Heraklion, Greece

5. Computation-based Science and Technology Research Center, The Cyprus Institute 5 , Nicosia 2121, Cyprus

Abstract

Polyisoprene (PI) melts have been studied, with most reports focusing on systems with high 1,4-cis content. In contrast, 1,4-trans PI homopolymers or random copolymers have seldom been examined, despite a handful of investigations suggesting a distinct dynamic behavior. Herein, we employ all-atom simulations to investigate the effect of chemical architecture on the dynamics of cis and trans-PI homopolymers, as well as copolymers. We examine the thermodynamic, conformational, and structural properties of the polymers and validate the performance of the models. We probe chain dynamics, revealing that cis-PI presents accelerated translation and reorientation modes relative to trans as recorded by the mean square displacement of the chain center-of-mass as well as by the characteristic times of the lower modes in a Rouse analysis. Interestingly, progressing to higher modes, we observe a reversal with trans units exhibiting faster dynamics. This was further confirmed by calculations of local carbon–hydrogen vector reorientation dynamics, which offer a microscopic view of segmental mobility. To obtain insight into the simulation trajectories, we evaluate the intermediate incoherent scattering function that supports a temperature-dependent crossover in relative mobility that extends over separations beyond the Kuhn-length level. Finally, we analyzed the role of non-Gaussian displacements, which demonstrate that cis-PI exhibits increased heterogeneity in dynamics over short-timescales in contrast to trans-PI, where deviations persist over times extending to terminal dynamics. Our all-atom simulations provide a fundamental understanding of PI dynamics and the impact of microstructure while providing important data for the design and optimization of PI-based materials.

Funder

Goodyear Tire & Rubber Company

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3