Numerical simulation of fiber orientation kinetics and rheology of fiber-filled polymers in uniaxial extension

Author:

Egelmeers Thijs R. N.12ORCID,Cardinaels Ruth13ORCID,Anderson Patrick D.1ORCID,Jaensson Nick O.1ORCID

Affiliation:

1. Processing and Performance of Materials, Department of Mechanical Engineering, Eindhoven University of Technology 1 , P.O. Box 513, 5600 MB Eindhoven, The Netherlands

2. Dutch Polymer Institute (DPI) 2 , P.O. Box 902, 5600 AX Eindhoven, The Netherlands

3. Soft Matter Rheology and Technology, Department of Chemical Engineering, KU Leuven 3 , Celestijnenlaan 200 J, Box 2424, 3001 Leuven, Belgium

Abstract

During processing of fiber composites, the fiber-induced stresses influence the local flow fields, which, in turn, influence the stress distribution and the fiber orientation. Therefore, it is crucial to be able to predict the rheology of fiber-filled polymer composites. In this study, we investigate the fiber orientation kinetics and rheological properties of fiber composites in uniaxial extensional flow by comparing direct numerical finite element simulations to experimental results from our previous study [Egelmeers et al., “In-situ experimental investigation of fiber orientation kinetics during uniaxial extensional flow of polymer composites,” J. Rheol. 68, 171–185 (2023)]. In the simulations, fiber–fiber interactions only occur hydrodynamically and lubrication stresses are fully resolved by using adaptive meshing. We employed a 7-mode and a 5-mode viscoelastic Giesekus material model to describe the behavior of, respectively, a strain hardening low-density polyethylene (LDPE) matrix and a non-strain hardening linear LDPE matrix, and investigated the influence of the Weissenberg number, strain hardening, and fiber volume fraction on the fiber orientation kinetics. We found that none of these parameters influence the fiber orientation kinetics, which agrees with our experimental data. The transient uniaxial extensional viscosity of a fiber-filled polymer suspension is investigated by comparing finite element simulations to a constitutive model proposed by Hinch and Leal [“Time-dependent shear flows of a suspension of particles with weak Brownian rotations,” J. Fluid Mech. 57(4), 753–767 (1973)] and to experimental results obtained in our previous study [Egelmeers et al., “In-situ experimental investigation of fiber orientation kinetics during uniaxial extensional flow of polymer composites,” J. Rheol. 68, 171–185 (2023)]. The simulations describe the experimental data well. Moreover, high agreement is found for the transient viscosity as a function of fiber orientation between the model and the simulations. At high strains for high fiber volume fractions, however, the simulations show additional strain hardening, which we attribute to local changes in microstructure.

Funder

Dutch Polymer Institute

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3