Magnon Bose–Einstein condensates: From time crystals and quantum chromodynamics to vortex sensing and cosmology

Author:

Mäkinen J. T.1ORCID,Autti S.2ORCID,Eltsov V. B.1ORCID

Affiliation:

1. Low Temperature Laboratory, Department of Applied Physics, Aalto University 1 , P.O. Box 15100, FI-00076 Aalto, Finland

2. Department of Physics, Lancaster University 2 , Lancaster LA1 4YB, United Kingdom

Abstract

Under suitable experimental conditions, collective spin-wave excitations, magnons, form a Bose–Einstein condensate (BEC), where the spins precess with a globally coherent phase. Bose–Einstein condensation of magnons has been reported in a few systems, including superfluid phases of 3He, solid state systems, such as yttrium-iron-garnet films, and cold atomic gases. The superfluid phases of 3He provide a nearly ideal test bench for coherent magnon physics owing to experimentally proven spin superfluidity, the long lifetime of the magnon condensate, and the versatility of the accessible phenomena. We first briefly recap the properties of the different magnon BEC systems, with focus on superfluid 3He. The main body of this review summarizes recent advances in the application of magnon BEC as a laboratory to study basic physical phenomena connecting to diverse areas from particle physics and cosmology to vortex dynamics and new phases of condensed matter. This line of research complements the ongoing efforts to utilize magnon BECs as probes and components for potentially room-temperature quantum devices. In conclusion, we provide a roadmap for future directions in the field of applications of magnon BEC to fundamental research.

Funder

UK Research and Innovation

Research Council of Finland

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3