Nonlinearity parameter in the pathlength dimension to improve the scattering in the transmission spectra

Author:

Luo Yongshun12ORCID,Li Gang23,Shan Guosong1,Xiao Suhua1,Lin Ling23ORCID

Affiliation:

1. College of Mechanical and Electronic Engineering, Guangdong Polytechnic Normal University, Guangzhou 510635, China

2. State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China

3. Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin 300072, China

Abstract

In spectrochemical quantitative analysis of solutions containing scattering components, the spectral nonlinearity caused by scattering seriously affects the prediction accuracy, robustness, and even feasibility of the models. Unlike the traditional methods (modeling with the spectra data of single pathlength) of approximating the nonlinear spectral line to linear to reduce the nonlinear features of scattering, a new method is proposed to reduce the effect of scattering by taking advantage of the nonlinear characteristics of spectral lines. First, the logarithmic function is used to fit the attenuation of multiple pathlengths, then the regression coefficient of the function is taken as the characteristic parameter of scattering, and the wavelengths with smaller characteristic parameter are selected as the modeling wavelengths. The model is robust and insensitive to the effect of scattering. The experiment involving a variety of scattering cases containing intralipids and ink was taken to verify the method. An F-test of the experimental results was significant at the 0.05 level. The root mean square error of prediction of the new method was 1.94%, and the prediction accuracy was 75.5% higher than that of the traditional model. The new method provides a novel approach toward describing the spectral nonlinearity with a function.

Publisher

AIP Publishing

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3