Statistically optimal analysis of the extended-system adaptive biasing force (eABF) method

Author:

Hulm Andreas1ORCID,Dietschreit Johannes C. B.12ORCID,Ochsenfeld Christian13ORCID

Affiliation:

1. Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany

2. Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

3. Max Planck Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart, Germany

Abstract

The extended-system adaptive biasing force (eABF) method and its newer variants offer rapid exploration of the configuration space of chemical systems. Instead of directly applying the ABF bias to collective variables, they are harmonically coupled to fictitious particles, which separates the problem of enhanced sampling from that of free energy estimation. The prevalent analysis method to obtain the potential of mean force (PMF) from eABF is thermodynamic integration. However, besides the PMF, most information is lost as the unbiased probability of visited configurations is never recovered. In this contribution, we show how statistical weights of individual frames can be computed using the Multistate Bennett’s Acceptance Ratio (MBAR), putting the post-processing of eABF on one level with other frequently used sampling methods. In addition, we apply this formalism to the prediction of nuclear magnetic resonance shieldings, which are very sensitive to molecular geometries and often require extensive sampling. The results show that the combination of enhanced sampling by means of extended-system dynamics with the MBAR estimator is a highly useful tool for the calculation of ensemble properties. Furthermore, the extension of the presented scheme to the recently published Gaussian-accelerated molecular dynamics eABF hybrid is straightforward and approximation free.

Funder

Deutsche Forschungsgemeinschaft

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3